\(\int \cot (c+d x) \sqrt {a+b \sec (c+d x)} \, dx\) [321]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 106 \[ \int \cot (c+d x) \sqrt {a+b \sec (c+d x)} \, dx=\frac {2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a}}\right )}{d}-\frac {\sqrt {a-b} \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a-b}}\right )}{d}-\frac {\sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )}{d} \]

[Out]

2*arctanh((a+b*sec(d*x+c))^(1/2)/a^(1/2))*a^(1/2)/d-arctanh((a+b*sec(d*x+c))^(1/2)/(a-b)^(1/2))*(a-b)^(1/2)/d-
arctanh((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2))*(a+b)^(1/2)/d

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {3970, 912, 1301, 212, 213} \[ \int \cot (c+d x) \sqrt {a+b \sec (c+d x)} \, dx=\frac {2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a}}\right )}{d}-\frac {\sqrt {a-b} \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a-b}}\right )}{d}-\frac {\sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )}{d} \]

[In]

Int[Cot[c + d*x]*Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(2*Sqrt[a]*ArcTanh[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a]])/d - (Sqrt[a - b]*ArcTanh[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a
 - b]])/d - (Sqrt[a + b]*ArcTanh[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]])/d

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 912

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> With[{q = De
nominator[m]}, Dist[q/e, Subst[Int[x^(q*(m + 1) - 1)*((e*f - d*g)/e + g*(x^q/e))^n*((c*d^2 + a*e^2)/e^2 - 2*c*
d*(x^q/e^2) + c*(x^(2*q)/e^2))^p, x], x, (d + e*x)^(1/q)], x]] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*
g, 0] && NeQ[c*d^2 + a*e^2, 0] && IntegersQ[n, p] && FractionQ[m]

Rule 1301

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[Ex
pandIntegrand[(f*x)^m*((d + e*x^2)^q/(a + b*x^2 + c*x^4)), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b^
2 - 4*a*c, 0] && IntegerQ[q] && IntegerQ[m]

Rule 3970

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[-(-1)^((m - 1
)/2)/(d*b^(m - 1)), Subst[Int[(b^2 - x^2)^((m - 1)/2)*((a + x)^n/x), x], x, b*Csc[c + d*x]], x] /; FreeQ[{a, b
, c, d, n}, x] && IntegerQ[(m - 1)/2] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {b^2 \text {Subst}\left (\int \frac {\sqrt {a+x}}{x \left (b^2-x^2\right )} \, dx,x,b \sec (c+d x)\right )}{d} \\ & = -\frac {\left (2 b^2\right ) \text {Subst}\left (\int \frac {x^2}{\left (-a+x^2\right ) \left (-a^2+b^2+2 a x^2-x^4\right )} \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{d} \\ & = -\frac {\left (2 b^2\right ) \text {Subst}\left (\int \left (-\frac {a}{b^2 \left (a-x^2\right )}+\frac {a+b}{2 b^2 \left (a+b-x^2\right )}+\frac {-a+b}{2 b^2 \left (-a+b+x^2\right )}\right ) \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{d} \\ & = \frac {(2 a) \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{d}+\frac {(a-b) \text {Subst}\left (\int \frac {1}{-a+b+x^2} \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{d}-\frac {(a+b) \text {Subst}\left (\int \frac {1}{a+b-x^2} \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{d} \\ & = \frac {2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a}}\right )}{d}-\frac {\sqrt {a-b} \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a-b}}\right )}{d}-\frac {\sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.23 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.94 \[ \int \cot (c+d x) \sqrt {a+b \sec (c+d x)} \, dx=-\frac {-2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a}}\right )+\sqrt {a-b} \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a-b}}\right )+\sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )}{d} \]

[In]

Integrate[Cot[c + d*x]*Sqrt[a + b*Sec[c + d*x]],x]

[Out]

-((-2*Sqrt[a]*ArcTanh[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a]] + Sqrt[a - b]*ArcTanh[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a
- b]] + Sqrt[a + b]*ArcTanh[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]])/d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(542\) vs. \(2(88)=176\).

Time = 2.24 (sec) , antiderivative size = 543, normalized size of antiderivative = 5.12

method result size
default \(-\frac {\sqrt {a +b \sec \left (d x +c \right )}\, \left (\sqrt {a +b}\, \ln \left (-\frac {2 \left (2 \cos \left (d x +c \right ) \sqrt {\frac {\left (b +a \cos \left (d x +c \right )\right ) \cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}\, \sqrt {a +b}+2 a \cos \left (d x +c \right )+\cos \left (d x +c \right ) b +2 \sqrt {a +b}\, \sqrt {\frac {\left (b +a \cos \left (d x +c \right )\right ) \cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}+b \right )}{\cos \left (d x +c \right )-1}\right ) \sqrt {a -b}-2 \sqrt {a}\, \ln \left (4 \cos \left (d x +c \right ) \sqrt {\frac {\left (b +a \cos \left (d x +c \right )\right ) \cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}\, \sqrt {a}+4 a \cos \left (d x +c \right )+4 \sqrt {a}\, \sqrt {\frac {\left (b +a \cos \left (d x +c \right )\right ) \cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}+2 b \right ) \sqrt {a -b}-a \ln \left (\frac {2 \sqrt {a -b}\, \sqrt {\frac {\left (b +a \cos \left (d x +c \right )\right ) \cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}\, \cos \left (d x +c \right )+2 \sqrt {\frac {\left (b +a \cos \left (d x +c \right )\right ) \cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}\, \sqrt {a -b}-2 a \cos \left (d x +c \right )+\cos \left (d x +c \right ) b -b}{\sqrt {a -b}\, \left (\cos \left (d x +c \right )+1\right )}\right )+\ln \left (\frac {2 \sqrt {a -b}\, \sqrt {\frac {\left (b +a \cos \left (d x +c \right )\right ) \cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}\, \cos \left (d x +c \right )+2 \sqrt {\frac {\left (b +a \cos \left (d x +c \right )\right ) \cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}\, \sqrt {a -b}-2 a \cos \left (d x +c \right )+\cos \left (d x +c \right ) b -b}{\sqrt {a -b}\, \left (\cos \left (d x +c \right )+1\right )}\right ) b \right ) \cos \left (d x +c \right )}{2 d \sqrt {a -b}\, \left (\cos \left (d x +c \right )+1\right ) \sqrt {\frac {\left (b +a \cos \left (d x +c \right )\right ) \cos \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right )^{2}}}}\) \(543\)

[In]

int(cot(d*x+c)*(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/d/(a-b)^(1/2)*(a+b*sec(d*x+c))^(1/2)*((a+b)^(1/2)*ln(-2*(2*cos(d*x+c)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d
*x+c)+1)^2)^(1/2)*(a+b)^(1/2)+2*a*cos(d*x+c)+cos(d*x+c)*b+2*(a+b)^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+
c)+1)^2)^(1/2)+b)/(cos(d*x+c)-1))*(a-b)^(1/2)-2*a^(1/2)*ln(4*cos(d*x+c)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+
c)+1)^2)^(1/2)*a^(1/2)+4*a*cos(d*x+c)+4*a^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)+2*b)*(a-b
)^(1/2)-a*ln(1/(a-b)^(1/2)*(2*(a-b)^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*cos(d*x+c)+2*((
b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*(a-b)^(1/2)-2*a*cos(d*x+c)+cos(d*x+c)*b-b)/(cos(d*x+c)+1))+
ln(1/(a-b)^(1/2)*(2*(a-b)^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*cos(d*x+c)+2*((b+a*cos(d*
x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*(a-b)^(1/2)-2*a*cos(d*x+c)+cos(d*x+c)*b-b)/(cos(d*x+c)+1))*b)*cos(d*x
+c)/(cos(d*x+c)+1)/((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 190 vs. \(2 (88) = 176\).

Time = 0.60 (sec) , antiderivative size = 2132, normalized size of antiderivative = 20.11 \[ \int \cot (c+d x) \sqrt {a+b \sec (c+d x)} \, dx=\text {Too large to display} \]

[In]

integrate(cot(d*x+c)*(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/4*(2*sqrt(a)*log(-8*a^2*cos(d*x + c)^2 - 8*a*b*cos(d*x + c) - b^2 - 4*(2*a*cos(d*x + c)^2 + b*cos(d*x + c))
*sqrt(a)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))) + sqrt(a - b)*log(-((8*a^2 - 8*a*b + b^2)*cos(d*x + c)^2 + b
^2 - 4*((2*a - b)*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a - b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*
a*b - 3*b^2)*cos(d*x + c))/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + sqrt(a + b)*log(-((8*a^2 + 8*a*b + b^2)*co
s(d*x + c)^2 + b^2 - 4*((2*a + b)*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a + b)*sqrt((a*cos(d*x + c) + b)/cos(d
*x + c)) + 2*(4*a*b + 3*b^2)*cos(d*x + c))/(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)))/d, 1/4*(2*sqrt(-a - b)*arct
an(2*sqrt(-a - b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/((2*a + b)*cos(d*x + c) + b)) + 2*sqrt(
a)*log(-8*a^2*cos(d*x + c)^2 - 8*a*b*cos(d*x + c) - b^2 - 4*(2*a*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a)*sqrt
((a*cos(d*x + c) + b)/cos(d*x + c))) + sqrt(a - b)*log(-((8*a^2 - 8*a*b + b^2)*cos(d*x + c)^2 + b^2 - 4*((2*a
- b)*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a - b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a*b - 3*b^2)*
cos(d*x + c))/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)))/d, -1/4*(2*sqrt(-a + b)*arctan(-2*sqrt(-a + b)*sqrt((a*c
os(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/((2*a - b)*cos(d*x + c) + b)) - 2*sqrt(a)*log(-8*a^2*cos(d*x + c)^
2 - 8*a*b*cos(d*x + c) - b^2 - 4*(2*a*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + b)/cos(d
*x + c))) - sqrt(a + b)*log(-((8*a^2 + 8*a*b + b^2)*cos(d*x + c)^2 + b^2 - 4*((2*a + b)*cos(d*x + c)^2 + b*cos
(d*x + c))*sqrt(a + b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a*b + 3*b^2)*cos(d*x + c))/(cos(d*x + c)
^2 - 2*cos(d*x + c) + 1)))/d, -1/2*(sqrt(-a + b)*arctan(-2*sqrt(-a + b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)
)*cos(d*x + c)/((2*a - b)*cos(d*x + c) + b)) - sqrt(-a - b)*arctan(2*sqrt(-a - b)*sqrt((a*cos(d*x + c) + b)/co
s(d*x + c))*cos(d*x + c)/((2*a + b)*cos(d*x + c) + b)) - sqrt(a)*log(-8*a^2*cos(d*x + c)^2 - 8*a*b*cos(d*x + c
) - b^2 - 4*(2*a*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))))/d, -1/4*(4
*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/(2*a*cos(d*x + c) + b)) - sqr
t(a - b)*log(-((8*a^2 - 8*a*b + b^2)*cos(d*x + c)^2 + b^2 - 4*((2*a - b)*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt
(a - b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a*b - 3*b^2)*cos(d*x + c))/(cos(d*x + c)^2 + 2*cos(d*x
+ c) + 1)) - sqrt(a + b)*log(-((8*a^2 + 8*a*b + b^2)*cos(d*x + c)^2 + b^2 - 4*((2*a + b)*cos(d*x + c)^2 + b*co
s(d*x + c))*sqrt(a + b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a*b + 3*b^2)*cos(d*x + c))/(cos(d*x + c
)^2 - 2*cos(d*x + c) + 1)))/d, -1/4*(4*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(
d*x + c)/(2*a*cos(d*x + c) + b)) - 2*sqrt(-a - b)*arctan(2*sqrt(-a - b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)
)*cos(d*x + c)/((2*a + b)*cos(d*x + c) + b)) - sqrt(a - b)*log(-((8*a^2 - 8*a*b + b^2)*cos(d*x + c)^2 + b^2 -
4*((2*a - b)*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a - b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a*b -
 3*b^2)*cos(d*x + c))/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)))/d, -1/4*(4*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*co
s(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/(2*a*cos(d*x + c) + b)) + 2*sqrt(-a + b)*arctan(-2*sqrt(-a + b)*sqr
t((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/((2*a - b)*cos(d*x + c) + b)) - sqrt(a + b)*log(-((8*a^2 + 8
*a*b + b^2)*cos(d*x + c)^2 + b^2 - 4*((2*a + b)*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a + b)*sqrt((a*cos(d*x +
 c) + b)/cos(d*x + c)) + 2*(4*a*b + 3*b^2)*cos(d*x + c))/(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)))/d, -1/2*(2*sq
rt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/(2*a*cos(d*x + c) + b)) + sqrt(-
a + b)*arctan(-2*sqrt(-a + b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/((2*a - b)*cos(d*x + c) + b
)) - sqrt(-a - b)*arctan(2*sqrt(-a - b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/((2*a + b)*cos(d*
x + c) + b)))/d]

Sympy [F]

\[ \int \cot (c+d x) \sqrt {a+b \sec (c+d x)} \, dx=\int \sqrt {a + b \sec {\left (c + d x \right )}} \cot {\left (c + d x \right )}\, dx \]

[In]

integrate(cot(d*x+c)*(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a + b*sec(c + d*x))*cot(c + d*x), x)

Maxima [F]

\[ \int \cot (c+d x) \sqrt {a+b \sec (c+d x)} \, dx=\int { \sqrt {b \sec \left (d x + c\right ) + a} \cot \left (d x + c\right ) \,d x } \]

[In]

integrate(cot(d*x+c)*(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(d*x + c) + a)*cot(d*x + c), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 293 vs. \(2 (88) = 176\).

Time = 0.63 (sec) , antiderivative size = 293, normalized size of antiderivative = 2.76 \[ \int \cot (c+d x) \sqrt {a+b \sec (c+d x)} \, dx=-\frac {{\left (\frac {4 \, a \arctan \left (-\frac {\sqrt {a - b} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b} + \sqrt {a - b}}{2 \, \sqrt {-a}}\right )}{\sqrt {-a}} - \frac {2 \, {\left (a + b\right )} \arctan \left (-\frac {\sqrt {a - b} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b}}{\sqrt {-a - b}}\right )}{\sqrt {-a - b}} + \sqrt {a - b} \log \left ({\left | -{\left (\sqrt {a - b} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b}\right )} {\left (a - b\right )} + \sqrt {a - b} a \right |}\right )\right )} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}{2 \, d} \]

[In]

integrate(cot(d*x+c)*(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/2*(4*a*arctan(-1/2*(sqrt(a - b)*tan(1/2*d*x + 1/2*c)^2 - sqrt(a*tan(1/2*d*x + 1/2*c)^4 - b*tan(1/2*d*x + 1/
2*c)^4 - 2*a*tan(1/2*d*x + 1/2*c)^2 + a + b) + sqrt(a - b))/sqrt(-a))/sqrt(-a) - 2*(a + b)*arctan(-(sqrt(a - b
)*tan(1/2*d*x + 1/2*c)^2 - sqrt(a*tan(1/2*d*x + 1/2*c)^4 - b*tan(1/2*d*x + 1/2*c)^4 - 2*a*tan(1/2*d*x + 1/2*c)
^2 + a + b))/sqrt(-a - b))/sqrt(-a - b) + sqrt(a - b)*log(abs(-(sqrt(a - b)*tan(1/2*d*x + 1/2*c)^2 - sqrt(a*ta
n(1/2*d*x + 1/2*c)^4 - b*tan(1/2*d*x + 1/2*c)^4 - 2*a*tan(1/2*d*x + 1/2*c)^2 + a + b))*(a - b) + sqrt(a - b)*a
)))*sgn(cos(d*x + c))/d

Mupad [F(-1)]

Timed out. \[ \int \cot (c+d x) \sqrt {a+b \sec (c+d x)} \, dx=\int \mathrm {cot}\left (c+d\,x\right )\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}} \,d x \]

[In]

int(cot(c + d*x)*(a + b/cos(c + d*x))^(1/2),x)

[Out]

int(cot(c + d*x)*(a + b/cos(c + d*x))^(1/2), x)